- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Okumura, Mikiko (2)
-
Sarlah, David (2)
-
Tang, Conghui (2)
-
Deng, Hejun (1)
-
Hooper, Annie R. (1)
-
Lee, Yu‐Hsuan (1)
-
Zhou, Yu (1)
-
Zhu, Yunbo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A palladium‐catalyzed dearomativesyn‐1,4‐oxyamination protocol using non‐activated arenes has been developed. This one‐pot procedure utilizes arenophile chemistry, and the correspondingpara‐cycloadducts are treated with oxygen nucleophiles via formal allylic substitution, providing direct access tosyn‐1,4‐oxyaminated products. The reaction conditions permit a range of arenes, as well as different O‐nucleophiles, such as oximes and benzyl alcohols. Moreover, this process was established in an asymmetric fashion, delivering products with high enantioselectivity. The dearomatized products are amenable to a multitude of further derivatizations ranging from olefin chemistry to C−H activation, giving rise to a diverse set of new functionalities. Overall, this dearomative functionalization offers rapid and controlled formation of molecular complexity, enabling straightforward access to functionalized small molecules from simple and readily available arenes.more » « less
-
Tang, Conghui; Okumura, Mikiko; Zhu, Yunbo; Hooper, Annie R.; Zhou, Yu; Lee, Yu‐Hsuan; Sarlah, David (, Angewandte Chemie International Edition)Abstract A protocol for palladium‐catalyzed dearomative functionalization of simple, nonactivated arenes with Grignard reagents has been established. This one‐pot method features a visible‐light‐mediated [4+2] cycloaddition between an arene and an arenophile, and subsequent palladium‐catalyzed allylic substitution of the resulting cycloadduct with a Grignard reagent. A variety of arenes and Grignard reagents can participate in this process, forming carboaminated products with exclusivesyn‐1,4‐selectivity. Moreover, the dearomatized products are amenable to further elaborations, providing functionalized alicyclic motifs and pharmacophores. For example, naphthalene was converted into sertraline, one of the most prescribed antidepressants, in only four operations. Finally, this process could also be conducted in an enantioselective fashion, as demonstrated with the desymmetrization of naphthalene.more » « less
An official website of the United States government
